Dynamics of Linear and Affine Maps

نویسنده

  • RAVI S. KULKARNI
چکیده

The well-known theory of the “rational canonical form of an operator” describes the invariant factors, or equivalently, elementary divisors, as a complete set of invariants of a similarity class of an operator on a finite-dimensional vector space V over a given field F. A finer part of the theory is the contribution by Frobenius dealing with the structure of the centralizer of an operator. The viewpoint is that of finitely generated modules over a PID, cf. for example [J], ch. 3. In this paper we approach the issue from a “dynamic” viewpoint. We also extend the theory to affine maps. The formulation is in terms of the action of the geneal linear group GL(n), resp. the group of invertible affine maps GA(n), on the semigroup of all linear, resp. affine, maps by conjugacy. The theory of rational canonical forms is connected with the orbits, and the Frobenius’ theory with the orbit-classes, of the action of GL(n) on the semigroup of linear maps. We describe a parametrization of orbits and orbit-classes of both GL(n)and GA(n)-actions, and also provide a parametrization of all affine maps themselves, which is independent of the choices of linear or affine co-ordinate systems, cf. sections 7, 8, 9. An important ingredient in these parametrizations is a certain flag. For a linear map T on V, let ZL(T ) denote its centralizer associative F-algebra, and ZL(T ) ∗ the multiplicative group of invertible elements in ZL(T ). In this situation, we associate a canonical, maximal, ZL(T )-invariant flag, and precisely describe the orbits of ZL(T ) ∗ on V, cf. section 3. Using this approach, we strengthen the classical theory in a number of ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C*-Extreme Points and C*-Faces oF the Epigraph iF C*-Affine Maps in *-Rings

Abstract. In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove som...

متن کامل

On Analytical Study of Self-Affine Maps

Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...

متن کامل

Hybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model

In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...

متن کامل

Design of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller

In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...

متن کامل

A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems

In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008